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Surizmavy. The possibility is considered of applying routine semicmpirical SCF-MO-CI 
procedures to the optical properties of polymers, such as polyamino acids, for instance. The 
polymer is assumed to  be of interincdiate length, namely, long enough that cyclic boundary 
conditions may be applicd, but definitely shorter than the wavelength of incident light. Sclection 
rules such as those which were derived by Moffzitt in the frame of the exciton model are here 
translated into the MO picture. In  the case of a helix the transitions polarized perpendicular to 
the axis of the helix are governed by clear-cut selection rules only if the number of repeating 
units N strictly corresponds to an integral multiple of a translational identity period. Questions 
concerning the tractability of the configuration interaction calculation are discussed. 

1. Introduction. - Theoretical investigations of the optical properties of poly- 
mers have until now practically exclusively been based on the exciton model. Interest 
in a molecular orbital description of polymers has been increasing, however. The 
eventual advantage of the latter approach rests in the possibility to explicitly take 
into account structural changes within the individual monomers or elementary cells 
in the polymer. For smaller polyatomic molecules the calculation of electronic spectral 
properties starting from one-electron molecular orbitals extending over all atomic 
centers has become a routine procedure, a t  least within a semiempirical frame. In the 
basis of appropriate SCF-LCAO-MO’s singly excited configurations are constructed, 
using the virtual canonical orbitals. A configuration interaction (CI) calculation in 
the basis of these configurational functions gives a first approximation to the lower 
excited states. There are of course cases where higher excited configurations possibly 
also should be included. 

In the present note we want to discuss the practical applicability of such a molec- 
ular orbital procedure to polymers built from repeating units such that, neglecting 
end effects, cyclic boundary conditions may be applied. We assume the polymer to 
be small enough though - containing perhaps between 10 and 100 elementary units - 
that higher retardation effects may be neglected in computing optical properties. 
Our particular interest concerns the tractability of the singly excited configuration 
interaction part. The way retardation effects come into play when the length of the 
polymer becomes comparable to the wavelength of incident light has been studied 
in the molecular orbital frame by Awry [l]. In  this latter case the approach out- 
lined here is no longer applicable. 

2. The molecular orbital scheme. - We consider a polymer built from N 
monomers or repeating units, in which each unit contains n, valence electrons. We 
assume that per monomer n valence orbitals have to be taken into account, leading 
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to a correspondingly large LCAO basis of the order of n . N. Cyclic symmetry will, 
however, factorize the Hartree-Fock matrix according to the irreducible representa- 
tions of the group CN, namely, for N even into 

There are consequently N matrices of dimension n to be diagonalized. As will become 
obvious in Sections 3 and 4, matrix elements of the Fock operator between MO’s of 
symmetry e+j and e-j vanish also. Other details concerning the SCF equations are 
to be found in [2]. The general form of a molecular orbital is 

with m running from 1 to n, j taking on the values 0, f 1, . , . f- (N/Z-l), N/2. OJ 

stands for exp (2ni/N), and s numbers an A 0  within the elementary cell p. Each 
one-electron monomer state m is formally split into an N-fold band of mostly doubly 
degenerate one-electron polymer states j .  It is easily seen that there are N . n& 
filled MO’s and consequently N * possible single excitations, where 

With respect to their symmetry these singly excited configurations are also evenly 
distributed over all irreducible representations of the group C N ~ ) .  Consequently there 
will be n singly excited configurations belonging to each of the N representations2) 
A, I3 and sub-representations E+j and E-j (see also Section 4). As N, ne and n grow, 
the computational labor of eventually diagonalizing these N CI-matrices rapidly 
becomes immense. It is therefore essential i) to reduce the number of matrices to be 
diagonalized, ii) to decrease their dimension. 

3. Selection rules for transition moments. - Being interested in optical prop- 
erties, the first problem i) may be approached by considering selection rules for 
electric dipole transition moments. Such selection rules were derived by Moffitt [3] 
in the frame of the exciton model. In  the MO picture the transition moment between 
the ground state and an excited state will be a linear combination of matrix elements 
between polymer MO’s of the form 

We now focus our attention on the second double summation in ( 3 ) ,  running over 
elementary cells, and we notice that it is independent of m and m‘. 

Assuming that s and sf have a definite constant value and that, on going from 
one elementary cell to the next, they always designate a pair of equivalent AO’s, 

l) 

2) 

Unless an overlap occurs between the energies of bands for which m 5 ne/2 and hands for 
which m > n,/2. This limitation does, however, not affect our basic argument. 
To characterize many-electron states, capital letters are used. 
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we may for our purposes drop these indices and abbreviate ( P S I  V I p’s’) by bPp+ We 
now perform the summation over p and p‘ in (3) in the following manner: 

N N  
P IP) bpp, = c J ‘ I  ’- 

p-1 p - 1  

N 

= 2 d’ ( j ’ - - j )  ( b p p  + C O ~ ’  b P ( p + I )  + wzj’ b p ( p + q  + . . . + w(N-1)j’ bp(p+N-l ) )  (4) 
P-1 

where we remember that p’ = N + u is equivalent to p’ = U, u being an integer, 
It now becomes essential to distinguish between the formal symmetry CN of the 

polymer and its actual geometry. We consider different simple cases: 
a) Linear  geometry: We find b,, = b,, = . . . etc., b,, = b,, = . . . etc.: The expres- 

sion in curly brackets in (4) is independent of p. Therefore expression (4) vanishes 
identically due to  the cyclic phase factor, unless j‘ = j .  

b) CycZic geometry: Formal and geometric symmetric are identical. It is imme- 
diately apparent that the z-components of the vectors bp(p+a) ,  parallel to the N-fold 
symmetry axis, lead to the same selection rule as in case a), namely j’  - j = 0. The 
in-plane components x, y may, as Mojfiitt showed (see expressions (17)-(19), (44) 
and (45) in [3], be written in the form 

b$$,Y!rr) = WP V, + w - p  v,*, (5) 
where u = 0 , l .  , . N - 1, and v, is a complex vector quantity independent of p. Intro- 
ducing (5) into (4) and factoring into p-dependent and p-independent terms, we 
obtain the phase factors wP(j’-j+l) and wP(j’-J-l) ,  leading to the selection rule j’ = j & 1. 

c) Helical geometry: This case is the one actually discussed in detail in [3] .  For 
the z-components of the vectors bp(P+cc), chosen parallel to the helical axis, the selec- 
tion rule is j’  = j. For the components perpendicular to the helical axis we find an 
analogy to (5): 

M = N/Q, where Q is the number of monomers per helical turn and in general not an 
integer. Introducing (6) into (4), the p-dependent phase factors become wp(J’-j+M) 

and o.N‘-j-M). Expression (3) consequently vanishes, unless j’  = j f M. Now by 
definition j‘ - j can only be an integral number, so M must be an integer. A clear-cut 
selection rule will consequently only hold for values of N that correspond to one or 
several translational identity periods along the axis of the helix, 

For the sake of completeness we mention the obvious fact that an expression 
like (3)  vanishes for any scalar one-electron operator - such as the kinetic or nuclear 
attraction hamiltonian - unless j’ = j. 

4. Many-electron integrals. - We consider an electron repulsion integral be- 
tween polymer MO’s of the general form <jm l’n’ I j‘m’ In) = 
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and consider in particular the summation over elementary-cell indices p, q’ p’, q. In 
analogy to our procedure in the previous section, we assume definite and constant 
values for s, t‘, s‘ and t, that is, we consider in every monomer a particular equivalent 
quadruplet of AO’s. With this in mind we can drop these latter indices and write: 

Because of the cyclic symmetry the value of the triple sum in brackets is independent 
of p. This may be visualized for a particular value of a, j3 and y. For instance, if 
a = 2, j3 = 1, y = 3 we indeed find (13 124) = (24 135) = (35 146) = . . . etc. Therefore 
the sum over p consists of constant terms times a complex phase factor and vanishes 
cyclically, unless 

(- j - 1’ + j’ + 1) = 0. (9) 

Relation (9) is of course also deducible on purely group theoretical grounds. The 
right-hand side of (8) may prove convenient for computer programming. The fall-off 
of the value of the electron repulsion integrals with distance will enable one to 
break-off the summation at relatively small values of a, and y. We now also im- 
mediately see that the matrix elements of the Fock operator 

{jmlFlj‘m‘) = 

= (jmlhlj’m’} + (Z(jmlnIj‘m’1n) - (jmlnlln j’m’)) 
In 

vanish, unless j’ = j. 
Integrals such as (7) appear in the energy matrix elements between excited con- 

figurations. j’m‘ and l’n’ may then be virtual polymer MO’s. Suppose j’ = j + M, to 
take an example of the previous section, then we must have 1’ = 1 + M to fulfill (9). 
This also illustrates that matrix elements between singly excited configurations 
transforming like E+M and ones transforming like E-M vanish. 

5. Configuration interaction. - The selection rule j’ = j (see Section 3) implies 
that there is only one CI  submatrix of dimension n between singly excited con- 
figurations of symmetry A to be considered. Similarly j’ = j & 1 is related to two CI 
matrices of symmetry E+, and E-, respectively, and j’  = j & M to two matrices of 
respective symmetry E+M and E-M. If in the helical case N/Q is not an integer, 
preventing a clear-cut selection rule for transitions polarized perpendicular to the 
axis of the helix, then the number of relevant CI  submatrices is correspondingly 
increased, ‘spreading’ the electric dipole intensity over transitions of different sym- 
metries. 

The problem ii) now remains of reducing the dimension of the matrices of given 
symmetry which actually have to  be diagonalized. There is no clear-cut criterion 
for this. The suggested procedure consists in primarily taking into account configura- 
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tions which make dominant numerical contributions to  the transition moments 
(both electric dipole and magnetic dipole, if one is interested in optical activity), 
possibly even at the expense of accuracy in assessing transition energies. The selec- 
tion of these dominant configurations may be carried out on oligomers without 
cyclic boundary conditions, where N is very small. The number of monomers in the 
polymer is then :increased stepwise, cyclic boundary conditions arc introduced, with 
the hope of finding a convergence of the results. 

The question of how important are doubly and higher excited configurations is 
not only relevant to polymers. But here it may become particularly important, due 
to the reduced energy gap between filled and empty MO’s and the great number of 
possible configurations. Double excitations will unquestionably affect the energy of 
even the lowest excited states with respect to the ground state. It appears unlikely, 
though, that they will in general invert the sequence of predicted longest-wavelength 
transitions. In general their contribution to the transition moments may be of limited 
importance for t.he following reason: There are no matrix elements of the transition 
moment operator between the ground configuration and thc doubly excited ones. 
There are nonvanishing contributions to the transition moment between selected 
singly and doubly excited configurations making up a given excited state wave- 
function and some doubly excited configurations belonging to the ground state 
wavefunctions. The coefficients of the doubly excited configurations in the ground 
state wavefunction will always be relatively small, however. Still, one cannot exclude 
that many such small contributions might finally add up to a big one. 

The acid test for the numerical procedure outlined here, based on the interaction 
of only a limited number of singly excited configurations, will not so much be the 
prediction of absorption spectra, but possibly rather of CD. spectra, wherever optical 
activity occurs, and where every transition will also be associated with a definite 
sign. Numerical. work is in progress. 
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